Stopping Agents
Language agents for optimal stopping
Example: Behavioral Cloning
The example Python code below trains a behavioral cloning agent on a dataset of sales conversations.
from stopping_agents.env import SalesCallEnv
from stopping_agents.behavioral_cloning import BehavioralCloningAgent
# Initialize the environment with your dataset and parameters
env = SalesCallEnv(
dataset=your_dataset,
time_checkpoints=[60, 90],
cost_per_second=0.0025,
benefit_per_sale=1.0
)
# Create and train the agent
agent = BehavioralCloningAgent(env.action_space)
agent.train(your_dataset)
# Evaluate the agent
obs, _ = env.reset()
done = False
while not done:
action = agent.predict(obs)
obs, reward, done, _, _ = env.step(action)